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Annotation of the rapidly accumulating body of sequence data relies heavily on the detection of remoteAbstract
homologues and functional motifs in protein families. The most popular methods rely on sequence alignment.
These include programs that use a scoring matrix to compare the probability of a potential alignment with
random chance and programs that use curated multiple alignments to train profile hidden Markov models
(HMMs). Related approaches depend on bootstrapping multiple alignments from a single sequence. However,
alignment-based programs have limitations. They make the assumption that contiguity is conserved between
homologous segments, which may not be true in genetic recombination or horizontal transfer. Alignments also
become ambiguous when sequence similarity drops below 40%. This has kindled interest in classification
methods that do not rely on alignment. An approach to classification without alignment based on the distribution
of contiguous sequences of four amino acids (4-grams) was developed. Interest in 4-grams stemmed from the
observation that almost all theoretically possible 4-grams (204) occur in natural sequences and the majority of
4-grams are uniformly distributed. This implies that the probability of finding identical 4-grams by random
chance in unrelated sequences is low. A Bayesian probabilistic model was developed to test this hypothesis. For
each protein family in Pfam-A and PIR-PSD, a feature vector called a probe was constructed from the set of
4-grams that best characterised the family. In rigorous jackknife tests, unknown sequences from Pfam-A and
PIR-PSD were compared with the probes for each family. A classification result was deemed a true positive if the
probe match with the highest probability was in first place in a rank-ordered list. This was achieved in 70% of
cases. Analysis of false positives suggested that the precision might approach 85% if selected families were
clustered into subsets. Case studies indicated that the 4-grams in common between an unknown and the best
matching probe correlated with functional motifs from PRINTS. The results showed that remote homologues
and functional motifs could be identified from an analysis of 4-gram patterns.

The amount of genetic information deposited in public protein the structure and function of these newly discovered sequences is
databases such as Swiss-Prot/TrEMBL,[1] PIR-PSD,[2] RefSeq,[3] the key to understanding and treating disease.[14,15] The rate of
GenPept[4] and the Protein Data Bank (PDB)[5] has increased accumulation of these new sequences, however, is far beyond the
exponentially with the advent of the genome era.[6-13] The PIR- capacity of the scientific community to determine their attributes
NREF database,[2] combining nonredundant sequences from all of through biochemical or crystallographic methods. Many databases
these sources, currently contains 1 292 569 entries. Understanding of protein families have been developed in the public domain to
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facilitate classification by similarity. These include Pfam,[16] PIR- including Euclidean distance,[48-51] covariance[52-54] and the cosine
PSD,[2] PROSITE,[17] BLOCKS,[18] PRINTS,[19] SMART,[20] between feature vectors.[55] Covariance-based metrics such as the
ProDom[21] and CDD.[22] Links between these databases are pro- Mahalanobis distance have also been employed.[56] They add
vided by InterPro.[23] computational complexity to the approach but they make compari-

sons independent of scale.[42] Other approaches exploiting theThe most popular approaches for determining homology are
statistical properties of n-grams involve information theory andbased on sequence alignment.[24,25] Possible alignments between
the Kullback-Liebler discrepancy or relative entropy.[57,58] Ap-two sequences are scored using substitution matrices[26] derived
proaches not involving n-grams have also been explored. Thesefrom evolutionary studies such as PAM[27] or multiple sequence
include universal sequence maps[59,60] based on chaos theory,alignments such as BLOSUM.[28] Scores for each potential align-
compression methods utilising Kolmogorov complexity[61] and ament are treated as log-likelihood ratios and added. Scores are
variety of machine learning algorithms including support vectornormalised using statistical approaches related to the extreme
machines[62-67] and neural nets.[68-71] Alignment-independent meth-value distribution.[25,29] Sequences with optimal alignments below
ods have been used to advantage to pre-process large databasea particular E-value (typically 0.001) are considered signifi-
searches, but they have not achieved wide popularity as primarycant.[25,29] Optimal global and local pathways are determined using
tools despite their potential utility.[42]dynamic programming techniques.[30-32] Common algorithms for

We developed an approach to classification without alignmentpairwise comparisons of protein sequences include FASTA,[7,9,33]

(CWA) based on the distribution of 4-grams in protein sequences.which takes advantage of high-scoring n-grams (usually called k-
Interest in 4-grams stemmed from the observation that almost alltuples), and BLAST®,[24] which extends high-scoring triplets. PSI-
theoretically possible 4-grams (204) occur in natural sequencesBLAST,[25] an enhancement of BLAST® that utilises position-
and the majority of 4-grams are uniformly distributed. This im-specific scores calculated from highest scoring BLAST® hits on
plies that the probability of finding the same 4-grams by randomsuccessive iterations, is particularly useful for finding distantly
chance in two unrelated sequences is low. A Bayesian probabilis-related proteins.
tic model was developed to test this hypothesis. The model wasMost of the large protein family databases in the public domain
used as the basis of a classification system for detecting proteinare constructed from multiple alignments using profile hidden
family homologues. The potential to identify functional motifsMarkov models (HMMs).[34-39] The largest of these is Pfam, which
through analysis of 4-gram patterns was explored in a series ofcurrently covers 93% of the sequences in the Swiss-Prot/
case studies.TrEMBL[1] database. A subset of Pfam called Pfam-A is based on

seed alignments that have been verified by human experts.[40] It
currently contains 975 024 domain sequences organised into 6193 Methods and Results
families. Attempts have also been made to align sequences without
training sets in order to build evolutionary trees directly. The
concept is to build a guide tree using pairwise comparison and to Database Selection and the Distribution of 4-Grams
refine it with sequence-family and family-family comparisons.
The most prominent example is ClustalW.[41] Two databases were selected for analysis. The first database

Alignment-based methods have limitations, however.[42] They was Pfam-A[16] (release 7.7), which is a database of protein fami-
are based on the assumption that contiguity is conserved between lies at the domain level. The domains were derived from Swiss-
homologous segments,[42] which may not be true in genetic recom- Prot[1] (release 41.0) containing 122 564 sequences and
bination or horizontal transfer.[43,44] Alignments also become am- TrEMBL[1] (release 23.0) containing 830 524 sequences. The do-
biguous when sequence similarity drops below 40% and become mains were identified using HMMs trained from curated seed
unusable when this level reaches 20–25%.[45-47] This has led a alignments.[29,34,72-75] This release contained 975 024 domains or-
number of investigators to explore classification programs that do ganised into 5193 families for an average of 188 members per
not rely on sequence alignment.[42] family. The second database was PIR-PSD (release 76.00), which

The majority of alignment-independent approaches are based is a database of 283 308 nonredundant whole protein sequences. A
on the statistical properties of n-grams. The vector space approach 158 938-member subset of these sequences was organised into
treats each protein sequence as a feature vector of n-grams. Simi- 19 559 PIR superfamilies[45] for an average of eight members per
larity between sequences is determined using a variety of metrics superfamily.
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shown in table I. These values define the a priori probabilities of
occurrence of m matches pm(x,y|U) in the examined database
(Pfam-A). We note that the percentage probability of randomly
finding five matching 4-grams, for example, is 0.146%. These
percentages would be an order of magnitude smaller if matches
from members of the same family were excluded from the simula-
tion.

The ability to use 4-grams to identify members of protein
families is a function of the difference in 4-gram distributions
between family members and nonfamily members. The Kullbak-
Liebler distance or relative entropy provides a convenient method
for quantifying this difference.[57,58] If P and Q are two different
distributions, the relative entropy is defined as (equation 1):

H(P||Q) = ∑ 
i
Pp log i
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Fig. 1. Probability of occurrence of all the 4-grams in Pfam-A. A total of
159 996 unique 4-grams were found in 975 024 domain sequences. The
4-grams are displayed in rank order by decreasing probability, piU. piU is
below 0.25% for a large majority of 4-grams. The inset displays the subset
of the most probable 4-grams. The most common 4-grams occurred in less
than 3% of sequences. This suggests that the probability of finding a large
number of matching 4-grams in unrelated sequences is low.

where piP and piP are the probabilities of the ith 4-gram in the
respective distributions P and Q. If the distribution of Q is uni-The probability of occurrence of different 4-grams was deter-
form, the relative entropy is equivalent to the difference in infor-

mined by enumerating all possible 4-grams in Pfam-A and PIR-
mation content between the two distributions.

PSD. The overall 4-gram count as well as the count of unique
The relative entropy of each of the 5193 domain families4-grams per sequence was recorded. The distribution of unique

defined in Pfam-A was determined with respect to U. The results4-grams per sequence for Pfam-A is shown in figure 1. The x axis
are shown in figure 2. The figure displays the probability distribu-

refers to the 4-gram serial numbers, in the order of descending
tion (or the number of occurrences) of relative entropies. Grids of

probability of occurrence in the database. Any 4-gram containing
size 0.8 are considered along the x axis. The relative entropies

the unknown residue type X was discarded. The ambiguous (and
were normalised for sequence length. The x axis values thus

rare) residue types B (Asx) and Z (Glx) were mapped to D and E,
reflect the information gain per 4-gram; there is an information

respectively. Theoretically, there are 160 000 (204) possible
gain for all families. The relative entropy is >1 per 4-gram in two-

4-grams. Pfam-A contained 159 996. The most common 4-grams
thirds of the examined domains, indicating about 1 order of

were GLLL and NNTR with probabilities of 2.8% (see figure 1).
magnitude difference in population of the probe 4-grams in the

These were succeeded by GDIR and CTRP (2.6% and 2.5%). In
families compared with the background. These results suggest that

the remainder of this article this background distribution will be
differences in 4-gram distributions could be used for identifying

referred to by the letter U (universal set). The results for PIR-PSD
family membership.

were comparable.

Figure 1 implies that the probability of finding multiple
Theoretical Basis of the Bayesian Probabilistic Model4-grams in common between unrelated sequences is low. To

confirm this, pairs of sequences were randomly selected with a

Monte Carlo (MC) algorithm from amongst the 975 024 se- A Bayesian probabilistic model for comparing sequences based
quences in Pfam-A, and the number of matching n-grams was on the distribution of 4-grams was developed by adapting the
recorded for each pair. The probability of pairs having m identical mathematical framework developed by Durbin et al.[29] for se-
4-grams (or the random/background probability of finding m quence alignment. Let x and y be two sequences that have m n-
identical 4-grams) was determined for m = {1…8}. The results are grams in common. The probability of m n-grams in common given

Table I. Probability of identical 4-grams in unrelated sequences

Matches (m) 1 2 3 4 5 6 7 8

Probability 0.12719 0.03459 0.01092 0.00380 0.00146 0.00062 0.00026 0.00012

© 2004 Adis Data Information BV. All rights reserved. Appl Bioinformatics 2004; 3 (2-3)



140 Vries et al.

between an unknown sequence and the 4-gram distribution
characterising a protein family.

Probe Creation and Certification

Feature vectors called probes were created for 5174 of the 5193
domain families in the 7.7 release of Pfam-A. Nineteen sequences
were excluded because they had less than ten unique 4-grams or
<20 members in their families. Probe construction involved three
steps. The first step was to calculate the log-likelihood ratio of
each 4-gram in the family and the corresponding 4-gram from the
background distribution. The second step was to sort this list in
descending order. The third step was the determination of the
probe vector size. The concept was to limit the probe to the most
discriminative 4-grams to reduce the dimensionality of the probe
while retaining the ability to identify family members. To this aim,
we increased the probe size in increments of ten 4-grams starting
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Fig. 2. Probability distribution of the relative entropy per 4-gram for the
5193 families in Pfam-A. There is a significant gain in information for the
majority of family distributions compared with the background distribution.
The mean value is calculated to be 2.072, indicating that the preferences
for the 4-grams in the Pfam families are about 2 orders of magnitude
different from those in the background distribution. Note that the informa-
tion gain per sequence is the x axis multiplied by the sequence length,
because the results are normalised with respect to sequence lengths (i.e.
divided by the total number of n-grams in each sequence).

at the top of the rank-ordered list. After each increment, the
probability of finding three matches between the probe and anthat the sequences belong to the same homologous family F is
equal size ‘random’ probe constructed from the background distri-given by (equation 2):
bution minus the family distribution was determined by MC

pm(x,y|F) = ∏ pi
F simulation. The process terminated when the probability of three

The product Π is performed for 1 ≤i ≤n. The same probability matches by random chance reached 0.001. For Pfam-A, the num-
by random chance (or in U) is (equation 3): ber of 4-grams in a probe ranged from 10 to 480. The average

probe contained 126 4-grams. Note that each score contributing topm(x,y|U) = ∏ pi
U

the Bayesian expression is a log-likelihood ratio, and thus the n-
such that the odds ratio of the two likelihoods can be expressed as gram probe vectors are weighted such that matches to the most
(equation 4): commonly occurring of the dominant 4-grams were scored as

more significant.pm(x,y|F)/pm(x,y|U) = ∏(pi
F/pi

U) 
After all probes were created, an MC simulation was run to

Taking the log of both sides yields an additive scoring function
determine the probability of m hits between each probe and its

similar to the one described by Durbin et al.[29] Let the log-odds
family distribution. This was repeated for the background distribu-

score be defined as (equation 5):
tion minus the family distribution. The same Bayesian probabilis-
tic model used to measure similarity was applied to the log odds

pm(x,y|F)p(F)

 [pm(x,y|F)p(F) + pm(x,y|U')p(U')] ratio of the probability of m hits given the family, p(m|F), versus
which simplifies to equation 6 after division by pm(x,y|U′)p(U′) the probability of m hits given nonfamily, p(m|U), to yield the p-
and substitution of the scoring function. value as a function of m. The results for all probes were formatted

into a look-up table to provide p-values based on the number of
common 4-grams between a probe and an unknown. The MC

pm(x,y|F) =  
(1 + eS')

eS'

certification process is depicted in figure 3. The table in this figure
shows the average probability for m = {1…6} over all 5174 Pfam-where (equation 7):
A families. The p-value reaches 0.05 on average (0.95–1.0) when

S' = Sm(x,y) + log p(F) 
p(U) the common number of 4-grams reaches five.

The a posteriori probability calculated with equations 6 and 7 For all the families in Pfam-A, p(F|m) was calculated for m =
can be used as a similarity metric between two sequences based on {1…5}. The results are presented in figure 4. The most important
common 4-grams. It can also be used to determine the similarity feature in this figure is again the size of m when the probability of
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Fig. 3. Schematic description of the Monte Carlo calculations for determining the conditional probability, p(F|m), of family F, also called probe certification
value, given m common n-grams between the probe and query sequence.

a correct classification approaches 1.0. A small percentage each of the 3671 probe models. The probability that the test
achieved this with m = 2 or m = 3. Almost 90–95% reached this by sequence was a member of each family was calculated using
the time m = 5. A small minority never approached 1.0 even with equation 6 and equation 7, in which x refers to the query sequence
larger m. These represent family distributions that do not differ and y to the family probe vector. The final list of 3671 probabilities
significantly from the background distribution. The average do- calculated for the query sequence was sorted into descending
main size was calculated to be 145 residues. The case of five order. If the correct Pfam family was associated with the sequence
matching 4-grams thus corresponds to only 6–14% of the average in first place, the result was labelled a true positive (TP). If the
sequence, depending on the extent of overlap between n-grams.

sequence in first place was not the correct sequence, the result was
This number (10 ± 4) represents a lower bound for the sequence

labelled a false positive (FP). Calculations were repeated for all
identity between the pairs having m = 5 matching n-grams, bearing

the 474 917 sequences in the testing set. Confidence limits were
in mind the two sequences may also have shorter n-grams in
common.

Jackknife Testing for Pfam-A

The specificity and sensitivity of CWA for protein domains
were estimated by dividing Pfam-A version 7.7 into equal training
and testing sets. Version 7.7 contains 975 024 sequences in 5193
domain families. Sequences containing less than ten 4-grams were
rejected, as were families having <20 members. The requirement
for ten 4-grams eliminated most of the short repeat domains. The
final set contained 949 835 sequences and 3671 families. These
were assigned to training and test sets on a family-by-family basis
under control of a random number generator. The training set
contained 474 918 members and the test set 474 917 members.

The training set was used to create 3671 probe models. Each
test (query) sequence was converted to a probe and compared with
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Fig. 4. The posterior probability of a correct classification into a given
Pfam-A family F, given that the query sequence has m common 4-grams
with the probe vector that represents the particular family. The x axis refers
to the 5174 Pfam-A domain families rank ordered in decreasing probabili-
ties. Results are shown for five cases, m = 1 … 5. Correct classification
reaches the 90% level when the number of 4-grams in common reaches
five.
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Fig. 5. Distribution of true positives (TPs) as a function of the number of matching 4-grams between the 4-gram vectors of the query sequence and the
family probe vectors. The inset shows the distribution of false positives (FPs) as a function of the number of matching 4-grams. The distributions are
generated by randomly sampling the 327 741 TPs and 147 176 FPs obtained from the application of a 4-grams-based family classification jackknife test to
half of the Pfam-A sequences, the other half being used for defining/training the probe vectors of the Pfam-A families.

assigned using the Bayesian probabilistic model depicted in figure implies an ~30% error rate in Pfam-A and PIR-PSD. Four hypoth-
3. A look-up table relating the probability of being correct as a eses were postulated to explain this error rate: (i) there may be
function of the number of 4-grams in common was constructed for unrecognised subclasses within families that could be detected by
each of the 3671 probe models. The results showed that 69% of probes with greater specificity; (ii) evolutionary relationships
sequences were correctly classified. Correctly classified sequences might be so remote that sequence identities have fallen below the
(TPs) showed a median of 15 4-gram matches with their family level detectable by n-grams; (iii) the conserved portions of some
probe, which corresponds to 12–41% sequence identity for an sequences may contain regions that are below the resolution of a
average Pfam-A domain of 145 residues, depending on whether 4-gram (an example might be zinc finger proteins, which are
the 4-grams shared common residues. FPs showed an average of characterised by a motif containing two noncontiguous histidines,
only 2.35 4-gram matches. The distributions of the matching

two noncontiguous cysteines and a set of wildcards[17]); and (iv)
4-gram counts (m) significantly differ in the TPs and FPs as shown

the Pfam-A classification may contain erroneous alignments. The
in figure 5. The average confidence limit for the TPs was 0.047.

seed alignments for the profile HMMs used in Pfam are carefully
The average confidence limit for the leading contender for the FPs

curated, but the full alignments are produced automatically.[16]

by contrast was 0.57. Analysis of FPs with poor confidence limits
Some insights into this process were gained by examining the

showed disproportionate membership in large Pfam families. For
relative entropies associated with the TPs and FPs founds in thelarge families, probe sizes, which averaged 126 4-grams in this
jackknife tests for Pfam-A. Figure 6 shows the results for all thestudy, are insufficient to characterise the family 4-gram distribu-

tion. This implies that large families need to be separated into
subfamilies. The analysis of FPs in the section Analysis of False
Positives supports this hypothesis. Selection of FPs with good
confidence limits (p-value < 0.05) yielded 10 667 instances from
147 176 FPs (8%). Analysis of this group showed mainly proteins
with multiple domains where one domain was favoured over the
other or classification near the top of the list, but not in the first
position. PIR-PSD results (not included in this article) were com-
parable (71% success rate).

Analysis of False-Positives

Sixty-nine percent of the sequences in Pfam-A and 71% in PIR-
PSD were correctly classified using the 4-gram-based CWA. This
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Fig. 6. Comparison of the relative entropy per 4-gram of the true positives
(TPs) and false positives (FPs). FPs with high values suggest distributions
that might be exploited by breaking families into subclasses and creating
probes with greater specificity.
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Table II. Comparison of PSI-BLAST and classification without alignment (CWA) methods

Program PSI-BLAST CWA Agreement

Successes (total) 57 (143) 54 (143) 48 (57)

Success ratea 0.399 0.378 0.842

a Where 1 is 100%.

Pfam-A sequences. Interestingly, some TPs show low relative than –10. Initially, the results were compared with the results
entropies, while the entropies of some FPs are high. The former reported by Okinaka et al.[76] in the literature. We repeated the
group may represent distant evolutionary relatives with 4-gram study of Okinaka et al.[76] using PSI-BLAST for all 143 ORFs
distributions close to the background noise but still detected by a using the same criteria as CWA. The results of the studies using
few discriminative 4-grams. The FPs with high relative entropy, identical criteria are presented in table II.
on the other hand, probably represent distributions that could be Table II shows that PSI-BLAST and CWA successfully classi-
exploited by breaking members into subclasses and building fy 40% of unknown protein sequences in terms of assignment of
probes with greater specificity. To evaluate this hypothesis, an function. The classifications agree with each other in 84% of
internal consistency check was conducted on Pfam-A. A new set cases. If the criteria are relaxed to allow recognition of conserved
of family probes was constructed from the 272 633 FPs observed domains of unknown function, the success rate increases to 72%.
in the jackknife tests. A total of 38% were correctly classified as This methodology is still being refined, but the initial results
TPs in this second generation classification. This provides evi- indicate it produces results comparable to PSI-BLAST under
dence that subclasses exist within certain families. Identification stringent conditions.
of these subclasses, or construction of probes that take account of
these subclasses, would lead to probes with higher specificity and Case Studies: Biological Meaning of the Most
should boost the accuracy rate of the overall classification to the Discriminative 4-Grams
80–85% accuracy-level range.

Case studies relating the most discriminative n-grams to known
biological and structural features were conducted for selectedComparison of Clarification Without Alignment with
members of the serine protease, protein kinase and G-coupledPSI-BLAST Similarity Searches
protein receptor (GPCR) families. A detailed analysis of the

The jackknife tests with Pfam-A and PIR-PSD demonstrate that GPCR serotonin receptor 5h1a_human (P08908) follows. Similar
CWA can successfully classify protein sequences. Models based results were obtained for the selected serine proteases and the
on Pfam-A or PIR-PSD, however, inherit any potential flaws in the protein kinases. The receptor 5h1a_human was correctly classified
parent models defining the family members. To avoid this, a new into its Pfam-A family with a 4-gram probe vector of d = 22
series of studies is underway using release 1.29 of PIR-NREF elements in common. These 22 n-grams, referred to as the most
containing 1 292 569 sequences.[2] In these studies, each protein discriminative n-grams, are illustrated in figure 7 together with the
was declared to be its own model. The feature space was also conserved motifs from the PRINTS database.[77] Before interpret-
extended to include all possible 4-grams in a window of six that ing these results, we briefly review the known structural and
allowed one or two gaps. Using an inverted index with n-grams as functional features of the GPCR family, and in particular the class
keys and NREF identification numbers as values, a list of classifi- A GPCRs to which the examined protein belongs. Rhodopsin, the
cation candidates rank ordered by n-grams in common can be built mammalian dim light photoreceptor molecule, is the defining
for any unknown sequence. An E-value can be assigned to each member of the largest subfamily of GPCR, the class A rhodopsin-
candidate on the list based on the probability of m n-grams in like receptors.[78] GPCRs share a common structural motif, a
common by random chance[29] using the same theoretical founda- bundle of seven transmembrane helices (see figure 7), which
tion as the Pfam-A and PIR-PSD studies. The efficacy of this divides the proteins into extracellular (EC), transmembrane (TM)
methodology was tested by classifying the 143 open reading and cytoplasmic (CP) domains. The first step in GPCR signal
frames (ORFs) in the virulence plasmid of anthrax reported by transduction is the binding of ligands (agonists) specific to each
Okinaka et al.[76] The threshold for successful classification was a receptor. Ligand-binding occurs in the EC and/or TM domains,
protein with annotation confirming function and an E-value better and both domains are structurally tightly coupled. This coupling
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10        20        30        40        50        60
|         |         |         |         |         |

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVAA IALERSL

70         80        90       100       110 120 130
|          |         |         |         | | |

QNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVLCCTSSILHLCAIA

140       150       160       170       180 190
|         |         |         |         | |

LDRYWAITDPIDYVNKRTPRRAAALISLTWLIGFLISIPPMLGWRTPEDRSDPDACTISKDHG YTIY

200 210 220       230       240       250       260
|           |          |         |         |         |         |

STFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTGADTRHGASPAPQPKKSVNGESGSRNWR

270       280       290       300       310       320        330
|         |         |         |         |         | |

LGVESKAGGALCANGAVRQGDDGAALEVIEVHRVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAK

340       350        360       370        380        390
|         | |         | | |

RKMALARERKTVKTLGIIMGTFILCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNP

400       410       420
|         |         |

VIYAYFNKDFQNAFKKIIKCKFCRQ

Top 22
most

discri-
minative
n-grams

CHMP
SCHM
WAIT
HLCA
LHLC
LCCT
DRYW
NWLG
YTIY
WTLG
VLCC
YWAI
RYWA
WLGY
WLPF
PFFI
YGRI
FYIP
CWLP
NYLI
GAFY
SILH

Motif 1: ITSLLLGTLIFCAVLGNACVVAAIA Motif 5: TIYSTFGAFYIPLLLMLVLYGRIF
Motif 2: ANYLIGSLAVTDLMVSVLVLPM Motif 6: TVKTLGIIMGTFILCWLPFFIVALV
Motif 3: DVLCCTSSILHLCAIALDRYWAI Motif 7: GAIINWLGYSNSLLNPVIYAYFNKDFQ
Motif 4: RAAALISLTWLIGFLISIPPML

N-terminus Helix I

Helix II Helix III

Helix IV

Helix V

Helix VI Helix VII

EC1

EC2

EC3

CP1

CP2

CP3

C terminus

Fig. 7. Distribution of 4-grams (bold letters) in the human serotonin receptor (ID: 5h1a_human) in comparison with the position of PRINTS motifs
(underlined) and transmembrane helices (boxes). Extracellular loops are indicated by the N-terminus and EC1 to EC3, cytoplasmic loops are indicated by
the C-terminus and CP1 to CP3. The seven transmembrane helices are indicated as helix I to helix VII. The 4-grams shown are the top 22 most strongly
contributing to the classification. They are also listed on the right of figure, rank ordered by weight. The motifs from the PRINTS database (http://
bioinf.man.ac.uk/dbbrowser/PRINTS) are listed at the bottom of the figure.

has been studied extensively in rhodopsin, where it was shown that A number of the above structural features are conserved across

point mutations in the TM or EC domains known to induce retinal the GPCR family. For instance, within the class A subfamily: (a)

degeneration cause misfolding via disruption of a disulphide bond the seven helical motif defines the family, and the highest conser-

between a cysteine at the end of helix III and a cysteine in the vation of amino acid residues is found in this domain;[95] (b) the

second EC loop.[79,80] All EC loops are intimately involved in disulphide bond in the EC domain is conserved in ~95% of class A

providing the environment for the disulphide bond and the inter- type GPCR; and (c) CP3, in which the highly conserved (D/E)RY

face to the centre of the TM bundle, as confirmed in the crystal sequence is located, is the dominant interaction site for binding of

structure of rhodopsin.[81] the G protein. The conservation of these features supports the

hypothesis that similar helix movements occur in all GPCRs inLigand-binding, and in the special case of rhodopsin, retinal
response to ligand-induced activation.[95] Therefore, the mecha-isomerisation, induces an opening of the helical bundle towards
nism of GPCR activation is believed to be fundamentally the samethe CP ends of the helices by an outward movement of helices II,
for all GPCRs.III, VI and VII, which behave as rigid bodies.[82-93] This movement

results in increases in distances between the CP loops connecting We asked if these general features that have been identified by

the helices, most notably CP1 and CP4[85,86] and CP2 and CP3[90] extensive studies of the GPCR family, and in particular rhodopsin,

upon light-activation. The resulting cleft in the centre of the helical are consistent with the top 22 most discriminative 4-grams of our

bundle is believed to expose a highly conserved DRY (or ERY) classification system. These 4-grams are shown in bold font in

sequence in CP3 that has been shown to be critical for the figure 7 together with the set of the motifs (or fingerprints) from

interaction with the G protein.[94] Preventing this exposure by the PRINTS database, as well as the seven TM helices. PRINTS

cross-linking inhibits activation of the G protein.[94] located motifs at the locations of the seven TM helices, since these
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are the most highly conserved regions in GPCR. The discrimina- tion purposes. This hypothesis was tested using all the families in
tive n-grams identify these to some degree also (in fact, the Pfam-A and PIR-PSD. Each family was divided randomly into
majority of 4-grams is located within PRINTS motifs), but inter- equal test and training sets. Feature vectors of 4-grams called
estingly, most of the 4-grams are within helix III, the helix that is probes were created for all training sets, and probes were created
most buried in the seven helical cluster.[81] Furthermore, the for each sequence in the test set. The a posteriori probability that a
4-grams were more specific in the identification of functional sites test probe belonged to a family was calculated for each family in
than PRINTS. There are no n-grams located in helices I and V, two the training set. The final result was presented as a list of training
helices that do not participate in the cooperative ligand-induced models rank ordered by a posteriori probability. If the training
opening of the TM domain. While PRINTS does identify the (D/ model in first place on the list represented the correct classification
E)RY motif, it does so only within a longer stretch of amino acids it was declared a true positive. Correct results were obtained in
that includes the entire helix III with additional functions. The n- 69% of cases for Pfam-A and 71% of cases for PIR-PSD. These
grams, in contrast, identified the (D/E)RY region as a distinctive results indicate that probes consisting of 4-grams have potential as
location, suggesting separate functions from 4-grams within helix classifiers under stringent conditions.
III. Furthermore, 4-grams identified additional features important Only the 4-grams with the highest log-likelihood ratios with
for GPCR that PRINTS was not able to detect. These are the n- respect to the background distribution were placed in probes. The
grams WTLG in EC1 and SCHMP in EC3. As described above, final size of a probe was truncated at the point where the chance
the EC loops are extremely important for the structural coupling for three 4-grams in common between unrelated sequences
between EC and TM domains. This coupling is an integral part of reached 0.001 as determined by Monte Carlo simulation. The
ligand-binding and signal transduction. average probe in Pfam-A had a size of 126 with a range of 10–480.

These results clearly suggest that the information used by Limiting the size of the average probe to 126 reduces the dimen-
homology detection and by feature identification in our classifica- sionality of the computational task from 160 000 (204) to 126. This
tion system is to some degree overlapping, but not entirely. Ho- reduces the computational burden by more than three orders of
mology detects features in addition to 4-grams, while 4-grams magnitude. Calculating the a posteriori probabilities for a query
detect features in addition to homology. The detailed comparison sequence against 5174 Pfam-A family members on a mid-range
described above also indicates that we will be able to improve Sun server, for example, required less than a second.
detection of features by n-gram classification by including Recently Cheng et al. (unpublished observation) explored the
equivalent classes and similarity matrices of amino acids. use of unigrams, bigrams and trigrams in a naive Bayes classifier

to classify GPCRs at the subfamily I and II levels. A chi-squared
feature selector was used to extract the top 7400 n-grams from theDiscussion
201 + 202 + 203 = 8420 possibilities for subfamily level I. This

Numerous classification schemes have been developed in the gave an accuracy of 93.2%, outperforming by 4.8% the best result
past based on the statistical properties of n-grams.[42,48-58] Howev- of Karchin et al.[66] using support vector machines. A similar
er, none have emphasised the properties of 4-grams. Our results approach yielded an accuracy of 92.4% for subfamily level II.
showed that almost all 4-grams were represented in naturally Cheng et al. (unpublished observation) concluded that high accu-
occurring sequences and that the majority of 4-grams were uni- racy could be obtained by selecting the most discriminative n-
formly distributed. Monte Carlo simulation demonstrated that the grams and that n-grams beyond trigrams were not necessary for
probability of finding 4-grams in common between unrelated robust classification. At first glance, these results seem at odds
sequences fell in the 0.05 range when the number of common with our results. Closer examination reveals they are compatible.
4-grams reached the 3–5 level. This number of common 4-grams All 4-grams can be broken down into combinations of unigrams,
corresponded to a sequence similarity in the 6–14% range, which bigrams and trigrams. The selection of the most discriminative n-
was below the identity level discernible by BLAST®.[24,25] Exami- grams in both approaches eliminates the n-grams with a high
nation of the relative entropy between the 4-gram distributions of incidence and little discriminative power. Both reduce the dimen-
the Pfam-A protein domain families and the PIR-PSD superfami- sionality of the computational problem, although the 4-gram ap-
lies compared with the background distribution showed a differ- proach was one to two orders of magnitude more effective in this
ence on average of two orders of magnitude. This implied that the regard. Comparison of accuracy is not warranted here because the
statistical properties of 4-grams might be exploited for classifica- GPCR subfamily I and II levels represent a smaller and more
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coherent dataset than all the sequences in Pfam-A and PIR-PSD. discriminative 4-grams for CTRA_BOVIN, however, shows that
Unpublished classification studies by one of the authors (J. K. only two of the three members of the catalytic triad were identi-
Vries) using 4-grams and sequences from the GPCRDB[96] fied. Unpublished studies by one of the authors (D. Tobi) using
database showed accuracy rates in the 90% range using the same combinations of bigrams and trigrams with 4-grams showed the
jackknife protocol used for Pfam-A and PIR-PSD. third member of the triad (Asp102) has a characteristic pattern that

is below the resolution of a 4-gram but is picked up with trigrams.A problem with the classification results presented in this
This suggests that combinations of bigrams, trigrams and 4-gramsarticle is that they are dependent on the quality of the underlying
might have advantages. It also suggests that exploring the use ofmodels in the training sets. The family definitions in Pfam-A are
4-grams in windows of 5–7 residues with gaps might be worth-derived from the application of an HMM to carefully curated seed
while since this would generate all possible subsets of unigrams,alignments. However, the full family alignments are generated
bigrams and trigrams as by-products. Similar results were ob-automatically. There is also a significant range in family size with
tained for the GPCR serotonin receptor 5h1a_human.some families having more than 16 000 members and others

The results indicate that 4-grams have potential for the classifi-having only one or two. This problem was analysed by creating
cation of unknown sequences. The most discriminative 4-gramsnew training and test sets from the false positives from the classifi-
seem to correlate with locally conserved functional motifs. Thecation runs for Pfam-A. New classification runs showed a success-
approach is also computationally efficient. It is general and can beful classification rate of 38% for the original false positives. This
modified to use a variety of feature spaces and metrics. Theimplied that a significant number of families contained subsets of
biggest limitation seems to be the quality of the underlying model4-grams related to family subdivisions. Normalising for the num-
defining the protein families.ber of false positives in the primary runs, this implied that an

accuracy rate in the 80–85% range might be achieved if the
Availabilityfamilies could be grouped into their subfamilies.

In the classification studies presented in this article, the a The software developed for the studies in this article was
posteriori probability was used as the metric. This was appealing written in Java. It is available as a jar file without charge to
because the theoretical foundation is similar to the foundation for academic users. Interested parties should contact the primary
alignment-based methods. This approach also enabled tables of p- author at vries@ccbb.pitt.edu for details.
values to be generated to judge the significance of individual
classifications. The approach in this study is a variation of the Acknowledgements
vector space model. In theory, a wide variety of metrics could be
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